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ADMISSIBLE BAYES TESTS FOR STRUCTURAL
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Abstract

It is an open problem to construct a test for structural refationship
among the mean vectors of several multivariate normal populations with
known but unequal covariance matrices. In this paper, a class of admissible
Bayes tests for the above problem is derived. As a byproduct, in the special
case of known and equal covariance matrices, the likelihood ratio test of
Rao(1973) is shown to be admissible Bayes.
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1. Introduction. Fisher(1939) pointed out the importance of tests
for structural relationship among the mean vectors of several multivariate

normal populations. To be specific, consider k independent p-variate multi-

normal populations, Np(u;,X;), ¢t = 1,---,k and the problem of testing
(1.1) Hy : Hp,=€,0=1.---,k versus
Hy : py,---,up arbitrary

where H : s x p is an unknown matrix of known rank s < p and € is an
unknown s-vector. The hypothesis Hy, if true, implies that the kK mean vec-
tors py, - -, ui liein a (p - s)-dimensional subspace of the Euclidean p-space
E? rather than in E¥ itself, and provides a structural relationship among
the mean vectors. As Fisher(1939) and Rao(1973) rightly emphasized. it is
essential that in dealing with several multinormal populations a hypothesis
of the form (1.1) be tested prior to using the models for prediction etc.

[t is an open problem in the literature to construct a suitable test for the
hypotheses in (1.1) based on independent samples from the k& populations
when ¥,, -+, %, are unequal. In the case when U,,---, ¥, are equal (and =

¥, say), Rao(1973) derived the likelihood ratio test (LRT) of H. against H,




-y

which rejects the null hypothesis for large values of T = i: A (BZ ). Here

=1
B is the matrix of the sums of squares and products due to the hypotheses
(between groups), A; < Ay < --- < A, are the ordered roots of BL~!, and
the natrix T is assumed known. If T is unknown, one replaces ¥ in the
detinition of T by W, the within matrix sum of squares and products due
to error (within groups). That the resultant test is the LRT is proved in
Fujikoshi(1974) and also in Rao(1985).

It is the object of this paper to provide a simple solution to the above
open problem when ¥,,---. Y, are assumed known. We have derived in
Section 2 a class of admissible Baves tests for the hypothesis H, versus
H,. Interestingly enough, inspite of the somewhat complicated structures
of the model and the problem. the derived tests are of extremely simple
form. In the special case of equal and known covariance matrices. the LRT
of Rao(1973) is shown to be admissible Bayes.

We may recall that a Bayes critical region (for 0 1 loss function) is of

the form
(1.2) {x:/f(x;0)7r|(d0) /f(x:0)7rn(d0) e}

for some positive constant ¢, where f(x:8) is the underlying joint density,




6 is the vector of parameters, 7, and m, are the prior probability measures
over the alternative parameter space ©, and the null parameter space Qg
respectively, and [ is over the respective parameter spaces (Kiefer and
Schwartz, 1965). Assuming that we have available a random sample of size
n, from the ith population, denoted as x,1, - ,Xyn,, t = l.---,k, we can

write

k ke
(13) f(x:8) = (2m) P2 TLIS " Zerr{~ 123 0,5 (%, - )

1 4 .
where X, = - Zx,]. S = L(x,] XXy - X)Lk,
n

k
n= Z":- 0 = (kv ome), © = {(e - ope) i ©EV 0 1 k)
©u = {(p1, - vpe) : Huy = &0 1o--- k. H:s - punknown,
rank(Hj = s < p, s known,&:s « 1 - E” unknown}, ©, = 0 -- O,.
ok k
In what follows the factor (27) " ? H (S, ™ 2etr{ -1/2 Z LS.} ap-
=1 1=1
pearing in f(x:6) is ignored because it is independent ot § and has no
influence on Bayes tests of the form (1.2). Thus one can write (1.2) in the

form

(1.4) {x:/f'(x:())fr,((w)/ / [ (x:0)m(d8) - ¢}




where

k
(1.5) F(x:0) =etr{-1/2>_ nIT7 (%X — p)(X — 1)’}

=1

Appropriate choices of 7y and 7y are made in Section 2 and the resultant

Bayes tests are derived.

2. Admissible Bayes tests of (1.1). Under the alternative H,, we
choose 7, as the absolutly continuous measure on the space EP* of the u;’s

given by

(2.1) dmy(uy. o ope) dpy o dug =

=~

k k
(27) kp:2 H ,A,{‘l"z(n n,)p”zelr{ - l,/'ZanA;](u‘ )y ¢}
1=1 =1

=1
where A, : p = p, p.d. matrix, and ¢, : p - 1 vector, 1 ~ 1.--- k. Clearly
m corresponds to choosing independent normal priors for each u,. The
matrices 4, and the vectors ¢,, 1 = 1..-. k, will be chosen later. This
immediately results in the numerator of the expression in (1.4) as
22) [ fxi0)mi(a0) -

k k
n,)*/? H (A, Retr{ - 1/2 Z n Y 'x,x!}
=1

1=1

::j»

(2m) 7%

1

etr{-1/2>_ n,A ¢!}

1=1

1l
E




etr{1/2> (7% + A7 )(ET R+ AT G) (S + AT Y

-/etr{_l/2znl(2|‘l + Ar_l)(ut - (E;l + A"l)—l

(1% AT ) (e - (57T + AT THE R0+ A7)}

d/J'l P dl“Lk

k k
= H |04, + Iplfl’vzetr{ -1;2 Z n,A e ¢!}
1=1

=1
k ’
etr{—1/2> n;T;'%,%,}
=1
k
etr{12) n (7%, + A WS %+ A7) (S0 AT )
t=1
The crux of the problem now is to evaluate the denominator of the

expression in (1.4). namely [ f*(x:0)ma(d8) for suitable m,'s. Towards this

end. first note that

(2.3) Hy,

<=

il
Iy

wo = H'(HH') "¢~ (I, - H'(HH') "' H)n,
for arbitrary n, = EV
so that ©, can be rewritten as
(24) O = {(my. px) e = H(HH'") "6+ (I, - H'(HH') "H)n,,

noe EPoi =1, k, &m0+ ng all arbitrary,

N




m*vw—F*—ﬁ

H s . punknoun.rank(H) s- p.sknown}.

Our choice of 7, on O, corresponds to choosing suitable priors for H ¥
{H:s - p rank(H) s}, & FE'andn, - E*.: 1.---.k. Throughout

the following. as far as H is concerned. we assume that 7, assigns all its

measure to the subsei & $4H o~ p H  (1.:0)} of ¥. It remains to
specifly priars of € andg 1, e This is done below.
Choose the conditional density of (1. i), given £, as
k
(2.5) drny. o &) dnydne (27) ‘”'EH‘(] n)P, e
Cl

k
etrd 12N 0P N (- A ) A}

[

and the marginal density of £ ax
. PR i o1 1 Y,
(2.6) dmy(§) 4 (2m) " T Qetrd 1 2Q°7(¢ )& &)Y

where ) :p - [, &5 - 1., :p s.P:p. ppd.Q:s  s.pd areto

be suitably chosen. Let

-lg

PR VS S LS
k k

, ol . ~

g = Ln,& X, = Lrl,;f..
1=1 t 1

6

e

e



0 O
v, = p-p
0 [,
v, = \III(Zn‘L,l)\II'I s+ 8
=1
Vo = WD, MWa:opoopot = Lok

\I/s‘ = \I’QE_l\IJ’I P oS, P ]'...'k.

Then the denominator of the expression in (1.4) can be simplified as

(2.8) /f'(x;&)n(.(cw) -

k
(Zﬂ)“l’k".’(n n[)h.? H ‘P‘ifl :('.),Tl') . ZTQE‘*L""
1ol

t=1
3
'CtT{ -1 22 n,S‘ IX‘X:}elr{ 1 -)'Q lsl)fn’}

1=1

k
cetr{-1,2> n,P, ™y

1
(=0 |

./ecr{mz(\pg QNES L1 2w Q e
L2603+ Q7NEN))

3
'etr{i’l/zznt[(q"h + Px71)77|n: - (\‘p'.‘dx WS(S .

1=1
P._l(’l:‘) + Azf))": 77|(‘I’2d| B \thf t P; l(’?l' . A(E))”}

k
etr{~1/2) " a, P, (€Al A &n - 2,88a0))

1==1

dédny -+ - dny

~1

P —————

L




k k
= (27{)—;* : H )P ‘H el ~‘r'2‘Q‘——l;2
=1 1=1
k 4
-etr{—l 2\,;‘71,__, X‘X:}etr{»l‘ZQ 150&-0}
t=1
k

etr{ -1 ZZn,P 'n,ﬂn;"}

1=1 ’
~€tr{l‘22k:n,(\llgd, PO (o, + P )
=1
(W, = P7Y NYetr{1 277’ '}
/ etr{~1, 2i?l:(¢4‘ =P D (Ve - PY) N(Wed - W6 P
=1
(- NN (Y - PN MW WS- PN - A8)"
etr{ 1 23(¢ = 'r)e = ')}

d&dn, - dn,

i
[TiPVy, « LIV HQUT 2 Fetr{-1 2Q7'€"¢"}
[

k k
etr{ 12> a5 'xx Yetr{- )Zn,[""n:'r}:"}etr{l 27721
1= 1 =1
k
etr{l 2 Lnt(\[/ 3, - P 'Y (Wad, - P, Y (V- P '
11
where l
k‘
(2.9) = o Q- N n AP A,
LI
: 1

‘\_:"1(1)1 le wﬁl)'(\y-h i [)| 1) 1([)( ‘-—\x \‘U"n)




and

k
(2.10) 7 = W F+Q ' -3 nAP 'n

=1

+ an(R_lAt - q’ﬁt)l(w«h + R‘l) Al(ql'.’.dt + P,—l’l.o)~

1=1
In the above A,'s, P’s, and @ are chosen so that = is p.d.. Hence,
combining (2.2) and (2.8), and taking the logarithm of the ratio of the

expressions in (2.2) and (2.8), the Bayes test turns out to be of the form

k
(2.11) > n(E70% A (S A ) (s Y
1=1
k
=Y (Wad, - PO (Wed - P ) (W - P Y
1=1

tr{rr'E_l}

We now choose P, Q. A,. A,. €', .. and ¢, suitably subject to = being
p.d. to reduce (2.11} to a nice form.

Let ¥, be partitioned as

> 3
a1y a1y

(2.12) 5, o=

s
P

2 S

where L,11) : s~ 8, T2z ¢ (p - s) - (p - s). and let £, be similarly

R Dl —



Ry

partitioned into

i AY - v A
where £ 112) = Ly Sy

) DL
Sa(21) =1

Choose

(1) k.

(l') EU
(ve) G
and (vit) n. 1

LR B B o &4
— —

21 e
faat} ~1
ol
=112
-1 < L |
)

0 Ty

trhere }),[“\ tsany s

&
-~ v 1.
(L "|“.(111) '
1
5"
“{11) 12
—(21) ~1(22)

10

1 ¢ RS 1
Sy P22 1

L.(:Q 1N —{22)

s.pd.matrr:




It may be noted that = simplies to

k
(2.14) T = U+ Q'+ nWy, PV,

1=1
k
= WD ST+ P (S + S R I )
=1 =1
k ‘ .
- \I’l(z n I+ nt(Ei_(il) + E,'1253-(22 1)‘2.21)
1=1 1=1

k
_ 11 -1 «ll ¢l
= 2T+ Ty + 5 - Ty

which is clearly p.d. and P,(;;) does not affect the calculation.
The three terms appearing in the left hand side of {2.11) can now be
evaluated. Combining the first term and the second term of (2.11). and

using (vt). we have

k
(215)  tr{d nx %L, (S, - AT T - (W, + PN )T
1=1
x , ,
. X (A NS s A e g P (W, - P T,
1—1

!

2o B A ) T A G (W e PTY) TR I)X

- (e AT =AY A P (W, - YT PTY)

. ,
= {3 xS (S ) ey - P TT)E )




k
+ Zn! §|S|
1=1

drop it. So (2.15) is now

k
tr{z ni (L, 'x
tr{l/ZZn,

ST AT AT -l P

l(\I/4, + R—l)~l

Since the second term of the last equation does not contain data, we may

T 2) 0 0 0

0 ANEERT. 0 X221

Also. using (1), (tv) and (v), the third term of (2.11) reduces to

f,T{l’T'E_l}

k

Wy 3)(918) (D i)

(;.",—,l "lL“) o

1/2 z‘n.‘ﬂ l' Lnx :

0 0
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P ————

Clearly P11y does not affect the above calculations. Combining (2.16) and

(2.17), (2.11) is now of the form

k | oy Tz O
(2.18) tr$> n(Z'%)(S, %)
=l 0 0
k (Zf:lnle_(:lﬂ)‘l 0

0 0

"

This immediately prove the following result.
THEOREM 2.1. An adnussible Bayes test of (1.1) rejects H, for large
values of the test statistic given by the left hand side of (2.18).

When £, .-, I, are equal (and = E, say). (2.18) reduces to

which is the same as

0 0

(2.20) tr{B|E"- e
0 T,

where B is defined earlier.
13




e

This leads to the following important result.
THEOREM 2.2. dn adnmussible Bayes test of (1.1) when T,

Y rejects Hy for large values of the test statisite given by the left

koL

by
hand side of (2.19) or (2.20).

REMARK 2.1. It is interesting to observe that the test statistic given
by the left hand side of (2.19} can be interpreted as the sum of the first s
roots of the matrix BY "'. This follows because one can always take & = I,
due to the nature of the hypotheses (1.1} and change B to £ ' *y-1 2

REMARK 2.2. It is clear from the preceding calculations that if, under
Hi.no is chosen as assigning all its measure to the subspace ¥, . of
the form ¥, , = {H : s - pH (0~ 1,01, -1, 01,
(0--+1-- 0) :s+ 1 with I at the yth position¥ 1 - 1y - -+ 1, p}.and
appropriate changes are made accordingly in the definitions of ¥, ¥, and

also in the choice of P,.Q. A, elc.. in the above priors of &and 5y, - n,.

then the Bayes test rejects H, for large values of the test statistic

k
(2.21y  tr Ln,(SllX.)(S;li,)' 0 Syny O
1=1

0 0 0

1.4

*14j<s, and 1, as the ijth column of H,
b




——— . Ty —— -

0 0 0
k k

- (oS ) [ 0 (B, Sl 0
t=1 =1

0 0 0

where £,y 4 is the appropriate s » s proper submatrix of X, corresponding
to the rows (1,.---.7,) and the columns (7;.---,7,). In the special case

of the equality of £,,---, ., it therefore follows from (2.21) that a test

which rejects H, for large values of the sum of any s roots of BL ! is

admissible Bayves. In particular, the likelihood ratio test of Rao(1973) for

equal covariance matrices which rejects H,, for large values of the sum of «

1

smallest roots of BY ! is admissible Bayes.
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